

NASA Air Mobility Pathfinders (AMP) Project 2023 AUVSI AAM Exposition Ken Goodrich, AMP Deputy Project Manager for Technology

The sea

6

Why? Mobility Increases Quality of Life

24 hr weighted average60 minute driving commute

Any time of day ~30 minute total commute (~40 mi radius)

Any time of day ~60 minute total commute (~100 mi radius)

Call to National Action on Advanced Air Mobility

Grow new transportation options

New modes of transportation available to the public which integrate with existing modalities and saves significant time

Advance environmental sustainability

Focus on electric powered thrust reduces carbon emissions for air travel and reduces dependency on fossil fuels

Amplify economic activity & jobs

Numerous estimates indicate potential for greater than \$100 billion U.S. annual revenue with large new job creation

Advance new technologies

Significant investments across industry and government require innovation and maturation of latest technological solutions

Support emergency preparedness

Novel air vehicle alternatives allow for increased intelligence for emergency prepared, response and robustness

Support U.S. competitiveness

New vehicle development, communications, Cybersecurity, autonomy & economic growth increase global competitiveness

The U.S. AAM Leadership & Coordination Act Provides Six Motivations for National Action

- Initial Scalable Urban Air Mobility Operations
 - >100 aircraft aloft, >10 vertiports, capacity for continued growth
 - Any city, not just ones with favorable weather
 - Low/no-visibility operations
 - Other types of weather tolerance
 - Flexible routing between vertiports
 - High tempo vertiport ops.
 - Human bottlenecks eased (pilot, ATM)
 - Compatible CNSI infrastructure
- Significant technical & regulatory challenges
 - Practical, certifiable, community compatible aircraft
 - Vertiports and other infrastructure
 - Flight procedures, including low-visibility ops
 - Traffic management & integration into airspace system
 - Pilot responsibility, qualifications
 - Interoperability of piloted and remotely pilot aircraft

system

AMP's Contributions

Approach **UAM Concept and** Challenge Requirements Challenge to gain stakeholder Work with a broad range of stakeholders toward common consensus on a common vision, roadmap & plan for NAS reference architectures for evolution UAM at scale **UAM Prototypes &** Evaluate midterm thru mature Solutions toward mature Simulation UAM concepts that scale from operations must progressively build out scalable architectures current day NAS capabilities through simulation from existing NAS capabilities **UAM Vehicle** Modeling, Test & Lack of performance data and Develop methods to evaluate **Evaluation** capabilities complicates emerging eVTOL aircraft integration of new entrant configurations & airspace vehicles into the airspace integration